Старт в науке. Классификация, морфология и физиология вирусов Структура простых вирионов

ЛЕКЦИЯ № 5.

ВИРУСОЛОГИЯ.

Все вирусы существуют в двух качественно разных формах. Внеклеточная форма – вирион – включает в себя все составные элементы вирусной частицы. Внутриклеточная форма – вирус – может быть представлена лишь одной молекулой нуклеиновой кислоты, т.к. попадая в клетку, вирион распадается на составные элементы. В то же время внутриклеточный вирус есть самореплицирующаяся форма, не способная к делению. На этом основании определение вируса предполагает принципиальное различие между клеточными формами существования (бактерии, грибы, простейшие), размножающихся делением, и реплицирующейся формой, воспроизводящейся из вирусной нуклеиновой кислоты. Но этим не ограничиваются отличительные признаки вирусов от про- и эукариот. К принципиальным отличиям относятся:

1. наличие одного типа нуклеиновой кислоты (ДНК или РНК);

2. отсутствие клеточного строения и белоксинтезирующих систем;

3. возможность интеграции в клеточный геном и синхронной с ним репликации.

Форма вириона может быть самой различной (палочковидные, эллипсоидные, сферические, нитевидные, в виде сперматозоида), что является одним из признаков таксономической принадлежности данного вируса.

Размеры вирусов настолько малы, что сопоставимы с толщиной клеточной оболочки. Наиболее мелкие (парвовирусы) имеют размер 18 нм, а наиболее крупные (вирус натуральной оспы) – около 400 нм.

В основу классификации вирусов положен тип нуклеиновой кислоты, образующей геном, что позволило выделить два подцарства:

рибовирусы – РНК-содержащие или РНК-вирусы;

дезоксирибовирусы – ДНК-содержащие или ДНК-вирусы.

Подцарства делятся на Семейства, Подсемейства, Роды и Виды.

При систематизации вирусов выделены следующие основные критерии: сходство нуклеиновых кислот, размеры, наличие или отсутствие суперкапсида, тип симметрии нуклеокапсида, характеристика нуклеиновых кислот, полярность, количество нитей в молекуле, наличие сегментов, наличие ферментов, внутриядерная или цитоплазматическая локализация, антигенная структура и иммуногенность, тропизм к тканям и клеткам, способность образовывать тельца включений. Дополнительный критерий – симптоматология поражений, т.е. способность вызывать генерализованные или органоспецифические инфекции.

По структурной организации различают простоорганизованные ("голые") и сложноорганизованные ("одетые") вирусы.

Структура простого вириона устроена таким образом, что вирусная нуклеиновая кислота, т.е. генетический материал вируса надежно защищен симметричной белковой оболочкой – капсидом , функциональная и морфологическая совокупность которых образует нуклеокапсид .

Капсид имеет строго упорядоченную структуру, в основе которой лежат принципы спиральной или кубической симметрии. Его образуют одинаковые по строению субъединицы – капсомеры , организованные в один или два слоя. Число капсомеров строго специфично для каждого вида и зависит от размеров и морфологии вирионов. Капсомеры, в свою очередь, образованы молекулами белка – протомерами . Они могут быть мономерными - составлены одним полипептидом или полимерными - составлены несколькими полипептидами. Симметричность капсида объяснима тем, что для упаковки генома требуется большое количество капсомеров, а компактное их соединение возможно только при симметричном расположении субъединиц. Формирование капсида напоминает процесс кристаллизации и протекает по принципу самосборки. Основные функции капсида определяются защитой вирусного генома от внешних воздействий, обеспечением адсорбции вириона на клетке, проникновением генома в клетку в результате взаимодействия капсида с клеточными рецепторами, обуславливают антигенные и иммуногенные свойства вирионов.

Нуклеокапсид повторяет симметрию капсида. При спиральной симметрии взаимодействие нуклеиновой кислоты и белка в нуклеокапсиде осуществляется по одной оси вращения. Каждый вирус со спиральной симметрией обладает характерной длиной, шириной и периодичностью. Большинство патогенных для человека вирусов, в том числе вирус гриппа, имеют спиральную симметрию. Организация по принципу спиральной симметрии придает вирусам палочковидную или нитевидную форму. Такое расположение субъединиц образуется полый канал, внутри которого компактно уложена молекула вирусной нуклеиновой кислоты. Ее длина может во много раз превышать длину вириона. У вируса табачной мозаики, например, длина вириона составляет 300 нм, а его РНК достигает величины 4000 нм. При такой организации белковый чехол лучше защищает наследственную информацию, но требует большего количества белка, т.к. покрытие состоит из сравнительно крупных блоков. При кубической симметрии нуклеиновая кислота окружена капсомерами, образующими икосаэдр – многогранник с 12 вершинами, 20 треугольными гранями и 30 углами. Организация вириона по этому принципу придает вирусам сферическую форму. Принцип кубической симметрии – самый экономичный для формирования замкнутого капсида, т.к. для его организации используются небольшие белковые блоки, образующие большое внутреннее пространство, в которое свободно укладывается нуклеиновая кислота.

Некоторые бактериофаги имеют двойную симметрию , когда головка организована по принципу кубической, а отросток – по принципу спиральной симметрии.

Для вирусов больших размеров характерно отсутствие постоянной симметрии .

Неотъемлемым структурно-функциональным компонентом нуклеокапсида являются внутренние белки , обеспечивающие правильную суперспирализованную упаковку генома, выполняющие структурную и ферментативную функции.

Функциональная специфичность вирусных ферментов определяется местом их локализации и механизмом образования. На основании этого вирусные ферменты разделяют на вирусиндуцированные ивирионные . Первые закодированы в вирусном геноме, вторые – входят в состав вирионов. Вирионные ферменты также разделяют на две функциональные группы: ферменты первой группы обеспечивают проникновение вирусных нуклеиновых кислот в клетку и выход дочерних популяций; ферменты второй группы участвуют в процессах репликации и транскрипции вирусного генома. Наряду с собственными, вирусы активно используют клеточные ферменты, которые не являются вирусоспецифическими. Но их активность может модифицироваться в процессе репродукции вируса.

Существует группа т.н. сложноорганизованных или "одетых" вирусов , которые, в отличие от "голых" , имеют поверх капсида особую липопротеиновую оболочку – суперкапсид или пеплос , организованный двойным слоем липидов и специфичными вирусными гликопротеинами, пронизывающими липидный бислой и образующими выросты-шипы (пепломеры или суперкапсидные белки ). Поверхностные суперкапсидные белки – важный компонент, облегчающий проникновение вирусов в чувствительные клетки. Именно этими специальными белками, названными F-белками (fusio - слияние), обеспечивается слияние вирусных суперкапсидов и клеточных мембран. Суперкапсид формируется на поздних этапах репродуктивного цикла при отпочковывании дочерних популяций и является производной структурой от мембран вирус-инфицированной клетки. Так, состав липидов зависит от характера "почкования" вирусной частицы. Например, у вируса гриппа состав липидного бислоя аналогичен таковому клеточных мембран. Т.к. герпесвирусы почкуются через ядерную мембрану, то набор липидов их суперкапсида отражает состав ядерной мембраны. Сахара, входящие в состав гликопротеинов, также происходят от клетки-хозяина.

На внутренней поверхности суперкапсида т.н. матричными белками (М-белки ) сформирован структурный слой, способствующий взаимодействию суперкапсида с нуклеокапсидом, что исключительно важно на заключительных этапах самосборки вирионов.

Тем не менее, главным структурным и функциональным компонентом вируса является его геном, определяющий все свойства вирусной частицы, как внутри, так и вне клетки-мишени. В геноме зашифрована информация о морфологических, биохимических, патогенных и антигенных свойствах его носителя. Геном вирусной частицы гаплоидный. Нуклеиновые кислоты представлены однонитевыми молекулами РНК или двунитевыми молекулами ДНК. Исключение составляют реовирусы, геном которых образован двумя нитями РНК и парвовирусы, у которых геном представлен в виде одной нити ДНК. Вирусы содержат только один тип нуклеиновой кислоты.

Вирусные ДНК организованы как циркулярные ковалентно сцепленные суперспирализованные или линейные структуры с молекулярной массой от 1 · 10 6 до 1 ·10 8 , что от 10 до 100 раз меньше молекулярной массы бактериальных ДНК. Геном содержит до нескольких сотен генов. Транскрипция вирусной ДНК осуществляется в ядре зараженной клетки. Нуклеотидные последовательности встречаются однократно, но на концах молекулы имеются прямые и инвертированные (развернутые на 180 о) повторяющиеся нуклеотидные последовательности. Этим обеспечивается способность молекулы ДНК замыкаться в кольцо. Кроме того, они являются своеобразными маркерами вирусной ДНК.

Вирусные РНК представлены одно- и двунитевыми молекулами и по своему химическому составу не отличаются от РНК клеточного происхождения. Однонитевые молекулы могут быть сегментированы, что ведет к увеличению кодирующей ёмкости генома. Кроме того, в них имеются спиральные участки типа двойной спирали ДНК, образующиеся за счет спаривания комплементарных азотистых оснований. Двунитевая РНК может быть линейной и кольцевой.

В зависимости от специфики внутриклеточного поведении и выполняемых функций вирусные РНК делят на группы:

1. Плюс-нити РНК , обладающие способностью транслировать закодированную в ней информацию на рибосомы клетки-мишени, т.е. выполнять функцию мРНК. РНК плюс-нитевых вирусов имеют характерные модифицированные концы в виде "шапочки", необходимые для специфического распознавания рибосом. Их называют плюс-нитями или позитивным геномом.

2. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомы и не могут функционировать как мРНК. Однако являются матрицей для синтеза мРНК. Их называют минус-нитями или негативный геном.

3. Двойные нити, одна из которых функционирует как –РНК, другая, комплементарная ей – как +РНК.

Многие вирусные нуклеиновые кислоты +РНК и ДНК-содержащих вирусов инфекционны сами по себе, т.к. содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Двунитевые РНК и большинство –РНК инфекционных свойств проявлять не могут.

Взаимодействие вируса с клеткой-мишенью – сложный и многоступенчатый процесс сосуществования двух форм живой материи – доклеточной и клеточной. Здесь проявляется весь комплекс воздействий вирусного генома на генетически закодированные биосинтетические процессы клетки хозяина.

Реализация репродуктивного цикла в значительной степени зависит от типа инфицирования клетки и характера взаимодействия вируса с чувствительной (могущей быть инфицированной) клеткой.

В вирус-инфицированной клетке возможно пребывание вирусов в различных состояниях:

1. воспроизводство многочисленных новых вирионов;

2. пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки в виде провируса;

3. существование в цитоплазме клетки в виде кольцевых нуклеиновых кислот, напоминающих плазмиды бактерий.

Именно этими состояниями определяется широкий диапазон нарушений, вызываемых вирусом: от выраженной продуктивной инфекции, завершающейся гибелью клетки, до продолжительного взаимодействия вируса с клеткой в виде латентной (скрытой) инфекции или злокачественной трансформации клетки.

Выделено четыре типа взаимодействия вируса с чувствительной клеткой:

1. Продуктивный тип – завершается образованием нового поколения вирионов и выход их в результате лизиса зараженных клеток (цитолитическая форма ), либо выход из клетки без ее разрушения (нецитолитическая форма ). По нецитолитическому типу взаимодействия чаще всего протекают персистирующие хронические инфекции , характеризующиеся образованием дочерних популяций возбудителя после завершения острой фазы болезни. Гибель клетки вызывается ранним подавлением синтеза клеточных белков, накоплением токсических и специфически повреждающих вирусных компонентов, повреждением лизосом и высвобождением их ферментов в цитоплазму;

2. Интегративный тип , или вирогения – характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и последующим функционированием как ее составная часть с совместной репликацией. По такому типу взаимодействия протекают латентное инфицирование , лизогения бактерий и вирусная трансформация клеток ;

3. Абортивный тип – не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов. Происходит при взаимодействии вируса с покоящейся клеткой, либо при инфицировании клетки дефектным вирусом.

Дефектными могут быть как вирусы, так и вирионы.

Дефектные вирусы существуют как самостоятельные виды и функционально неполноценны, т.к. для их репликации необходим "вирус-помошник", т.е. дефект определяется неполноценностью генома. Делятся на 3 группы:

1. Дефектные интерферирующие частицы , представляющие собой вирионы, содержащие только часть генетической информации исходного вируса и реплицируется только при участии родственного "вируса-помощника";

2. Вирусы-спутники от предыдущих отличаются тем, что для своей репродукции требуют участия любого "вируса-помощника", не обязательно родственного;

3. Интегрированные геномы представляют собой провирусы, т.е. вирусные геномы, встроенные в хромосому клетки, но утратившие способность к превращению в полноценный вирус;

Дефектные вирионы составляют группу, формирующуюся при образовании больших дочерних популяций, и их дефектность определяется главным образом морфологической неполноценностью (пустые капсиды, безоболочечные нуклеокапсиды и др.). Особая форма дефектных вирионов – псевдовирионы, имеющие нормальный капсид, содержащий часть собственной нуклеиновой кислоты и фрагменты нуклеиновой кислоты хозяина, либо часть хромосомы клетки хозяина и часть нуклеиновой кислоты другого вируса.

Значение дефектных вирусов состоит в их способности переносить генетический материал из клетки-донора в клетку-реципиент.

4. Интерференция вирусов – происходит при инфицировании клетки двумя вирусами и возникает не при всякой комбинации возбудителей. Интерференция реализуется либо за счет индукции одним вирусом клеточных ингибиторов, подавляющих репродукцию другого, либо за счет повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго. Различают гомологичную (родственные вирусы) и гетерологичную (неродственные вирусы) интерференцию.

По характеру взаимодействия генома вируса с геномом клетки различают автономное и интеграционное инфицирование . При автономном инфицировании геном вируса не интегрирован в геном клетки, тогда как при интеграционном происходит интеграция вирусного генома в клеточный.

Продуктивный тип взаимодействия вируса с клеткой , т.е. репродукция вируса представляет собой уникальную форму выражения чужеродной (вирусной) генетической информации в клетках человека, животных, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации. Это сложнейший процесс взаимодействия двух геномов протекающий в 6 стадий:

1. адсорбция вирионов;

2. проникновение вируса в клетку;

3. "раздевание" и высвобождение вирусного генома;

4. синтез вирусных компонентов;

5. формирование вирионов;

6. выход вирионов из клетки.

Первая стадия репродукции – адсорбция , т.е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза – неспецифическая , обусловленная ионным притяжением и другими механизмами взаимодействия между вирусом и клеткой. Вторая фаза – высокоспецифическая , обусловленная гомологией и комплементарностью рецепторов чувствительных клеток и узнающих их белковых лигандов вирусов. Узнающие и взаимодействующие вирусные белки называются прикрепительными и представлены гликопротеинами, в составе липопротеиновой оболочки капсида или суперкапсида вируса.

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков и липидов. Одна клетка может нести от десяти до ста тысяч специфических рецепторов, что позволяет закрепиться на ней десяткам и сотням вирионов. Количество инфекционных вирусных частиц, адсорбированных на клетке, определяет термин "множественность заражения" . Тем не менее, инфицированная вирусом клетка в большинстве случаев толерантна к повторному заражению гомологичным вирусом.

Наличие специфических рецепторов лежит в основе тропизма вирусов к определенным клеткам, тканям и органам.

Вторая стадия – проникновение вируса в клетку может происходить несколькими путями.

1. Рецепторно-зависимый эндоцитоз происходит в результате захватывания и поглощения вириона чувствительной клеткой. При этом клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эндосомы), содержащей вирус. Далее происходит слияние липопротеиновой оболочки вируса с мембраной эндосомы и выход вируса в цитоплазму клетки. Эндосомы объединяются с лизосомами, которые разрушают оставшиеся вирусные компоненты.

2. Виропексис – заключается в слиянии вирусного суперкапсида с клеточной или ядерной мембраной и происходит при помощи специального белка слияния F-белка , входящего в состав суперкапсида. В результате виропексиса капсид оказывается внутри клетки, а суперкапсид вместе с белком интегрирует (встраивается) в плазматическую или ядерную мембрану. Присущ только сложно устроенным вирусам.

3. Фагоцитоз – по средствам которого вирусы проникают в фагоцитирующие клетки, что приводит к незавершенному фагоцитозу.

Третья стадия – "раздевания" и высвобождения вирусного генома происходит в результате депротеинизации, модификации нуклеокапсида, удаления поверхностных вирусных структур и высвобождения внутреннего компонента, способного вызвать инфекционный процесс. Первые этапы "раздевания" начинаются еще в процессе проникновения в клетку путем слияния вирусных и клеточных мембран или при выходе вируса из эндосомы в цитоплазму. Последующие этапы тесно связаны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные участки "раздевания". Транспорт к ним осуществляется с помощью внутриклеточных мембранных пузырьков, в которых вирус переносится на рибосомы, эндоплазматическую сеть или в ядро.

Четвертая стадия – синтез вирусных компонентов начинается в момент теневой или эклипс-фазы, которая характеризуется исчезновением вириона. Теневая фаза заканчивается после образования составных компонентов вируса, необходимых для сборки дочерних популяций. Вирус использует для этого генетический аппарат клетки, подавляя необходимые ей самой синтетические реакции. Синтез белков и нуклеиновых кислот вируса, т.е. его репродукция, разобщен во времени и пространстве, осуществляется в разных частях клетки и называется дизъюнктивным.

В зараженной клетке вирусный геном кодирует синтез двух групп белков:

- неструктурных белков , обслуживающих внутриклеточную репродукцию вируса на разных его этапах к которым относятся РНК- или ДНК-полимерезы, обеспечивающие транскрипцию и репликацию вирусного генома, белки-регуляторы, предшественники вирусных белков, ферменты, модифицирующие вирусные белки;

- структурных белков , входящих в состав вириона (геномные, капсидные и суперкапсидные).

Синтез белков в клетке осуществляется в соответствии с процессами транскрипции путем "переписывания" генетической информации с нуклеиновой кислоты в нуклеотидную последовательность информационной РНК (иРНК) и трансляции (считывания) иРНК на рибосомах с образованием белков. Термином "трансляция" называют механизмы, при помощи которых последовательность нуклеиновых оснований иРНК переводится в специфическую последовательность аминокислот в синтезируемом полипептиде. При этом происходит дискриминация клеточных иРНК и синтетические процессы на рибосомах переходят под вирусный контроль. Механизмы передачи информации в отношении синтеза иРНК у разных групп вирусов неодинаковы.

Двунитевые ДНК-содержащие вирусы реализуют генетическую информацию так же, как и клеточный геном, по схеме: геномная ДНК вируса транскрипция иРНК трансляция вирусного белка . При этом, ДНК-содержащие вирусы, геномы которых транскрибируются в ядре, используют для этого процесса клеточную полимеразу, а геномы которых транскрибируются в цитоплазме – собственную вирусоспецифическую РНК-полимеразу.

Геном –РНК-содержащих вирусов служит матрицей, с которой транскрибируется иРНК, при участии вирусоспецифической РНК-полимеразы. Синтез белка у них происходит по схеме: геномная РНК вируса транскрипция иРНК трансляция белка вируса .

Особняком стоит группа РНК-содержащих ретровирусов, к которой относятся вирусы иммунодефицита человека и онкогенные ретровирусы. Они имеют уникальный путь передачи генетической информации. Геном этих вирусов состоит из двух идентичных молекул РНК, т.е. является диплоидным. В составе ретровирусов есть особый вирусоспецифический фермент – обратная транскриптаза , или ревертаза , с помощью которой осуществляется процесс обратной транскрипции. Заключается он в следующем: на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Она копируется с образованием двунитевой комплементарной ДНК, которая интегрирует в клеточный геном и в его составе транскрибируется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков этих вирусов осуществляется по схеме: геномная РНК вируса комплементарная ДНК транскрипция иРНК трансляция белка вируса .

Регуляция транскрипции осуществляется клеточными и вирусоспецифическими механизмами. Она заключается в последовательном считывании информации с т.н. "ранних" и "поздних" генов . В первых закодирована информация для синтеза вирусоспецифических ферментов транскрипции и репликации, во вторых – для синтеза капсидных белков.

Синтез вирусных нуклеиновых кислот, т.е. репликация вирусных геномов , приводит к накоплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических и клеточных полимераз, от способности вирусов индуцировать образование полимераз в клетке.

Двунитевые ДНК-вирусы реплицируются обычным полуконсервативным способом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной синтезированной нити.

Однонитевые ДНК-вирусы в процессе репликации используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, т.н. репликативной формы . При этом на исходной +ДНК-нити комплементарно синтезируется –ДНК-нить, служащая матрицей для +ДНК-нити нового вириона.

Однонитевые +РНК-вирусы индуцируют в клетке синтез РНК-зависимой РНК-полимеразы. С ее помощью на основе геномной +РНК-нити синтезируется –РНК-нить, формируется временная двойная РНК, названная промежуточным репликативным звеном . Оно состоит из полной +РНК-нити и многочисленных частично завершенных –РНК-нитей. Когда сформированы все –РНК-нити, они используются как шаблоны для синтеза новых +РНК-нитей.

Однонитевые –РНК-вирусы имеют в своем составе РНК-зависимую РНК-полимеразу. Геномная –РНК-нить трансформируется вирусной полимеразой в неполные и полные +РНК-нити. Неполные копии выполняют роль иРНК для синтеза вирусных белков, а полные – являются матрицей для синтеза геномной –РНК-нити потомства.

Двунитевые РНК-вирусы реплицируются аналогично однонитевым –РНК-вирусам. Отличие в том, что образовавшиеся в процессе транскрипции +РНК-нити функционируют не только как иРНК, но и участвуют в репликации. Они являются матрицей для синтеза –РНК-нитей. В комплексе они образуют геномные двунитевые РНК вирионов.

Диплоидные +РНК-вирусы или ретровирусы реплицируются с помощью вирусной обратной транскриптазы, синтезирующей на матрице РНК-вируса –ДНК-нить, с которой копируется +ДНК-нить с образованием двойной нити ДНК, замкнутой в кольцо. Далее двойная нить ДНК интегрируется с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Пятая стадия – сборка вирионов происходит путем упорядоченной самосборки , когда составные части вириона транспортируются в места сборки вируса. Таковыми являются специфические участки ядра и цитоплазмы, называемые репликативными комплексами . Соединение компонентов вириона обусловлено наличием гидрофобных, ионных, водородных связей и стереохимическим соответствием.

Формирование вирусов это многоступенчатый, строго последовательный процесс, с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов. Сборка просто устроенных вирусов происходит на репликативных комплексах и заключается во взаимодействии вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов. У сложноустроенных вирусов сначала на репликативных комплексах формируются нуклеокапсиды, которые затем взаимодействуют с модифицированными мембранами клеток, являющихся будущей липопротеиновой оболочкой вириона. При этом сборка вирусов, реплицирующихся в ядре, происходит с участием мембраны ядра, а сборка вирусов, репликация которых происходит в цитоплазме, осуществляется с участием мембран эндоплазматической сети или цитоплазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вириона. У некоторых сложноустроенных –РНК-вирусов в сборку вовлекается матричный белок – М-белок – который расположен под модифицированной этим белком клеточной мембраной. Обладая гидрофобными свойствами, он исполняет роль посредника между нуклеокапсидом и суперкапсидом. Сложноустроенные вирусы в процессе формирования включают в свой состав компоненты клетки хозяина. При нарушениях процесса самосборки образуются "дефектные" вирионы.

Шестая стадия – выход вирусных частиц из клетки завершает процесс репродукции вирусов и происходит двумя путями.

Взрывной путь , когда вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают во внеклеточное пространство. Из погибшей клетки одновременно выходит большое число вирионов.

Почкование или экзоцитоз , характерный для сложноустроенных вирусов, суперкапсид которых является производной от клеточных мембран. Сначала нуклеокапсид транспортируется к клеточным мембранам, в которые уже встроены вирусоспецифические белки. В области контакта начинается выпячивание этих участков с образованием почки. Сформировавшаяся почка отделяется от клетки в виде сложноустроенного вириона. Процесс не летален для клетки и клетка способна длительно сохранять жизнеспособность, продуцируя вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану, либо через мембраны эндоплазматической сети и аппарата Гольджи с последующим выходом на поверхность клетки.

Вирусы, формирующиеся в ядре, почкуются в перинуклеарное пространство через модифицированную ядерную оболочку и в составе цитоплазматических везикул транспортируются на поверхность клетки.

Интегративный тип взаимодействия вируса с клеткой (вирогения) представляет собой сосуществование вируса и клетки в результате интеграции нуклеиновой кислоты вируса в хромосому клетки хозяина, при котором геном вируса реплицируется и функционирует как основная часть генома клетки.

Такой тип взаимодействия характерен для умеренных ДНК-содержащих бактериофагов, онкогенных вирусов и некоторых инфекционных ДНК- и РНК-содержащих вирусов.

Для интеграции необходимо наличие кольцевой форму двунитевой ДНК вируса. Такая ДНК прикрепляется к клеточной ДНК в месте гомологии и встраивается в определенный участок хромосомы. У РНК-вирусов процесс интеграции более сложный и начинается с механизма обратной транскрипции. Интеграция происходит после образования двунитевого ДНК-транскрипта и замыкания его в кольцо.

Дополнительная генетическая информация при вирогении сообщает клетке новые свойства, что может стать причиной онкогенной трансформации клеток, аутоиммунных и хронических заболеваний.

Абортивный тип взаимодействия вируса с клеткой не завершается образованием вирусного потомства и может возникнуть при следующих условиях:

1. заражение чувствительной клетки происходит дефектным вирусом или дефектным вирионом;

2. заражение вирулентным вирусом генетически резистентных к нему клеток;

3. заражение вирулентным вирусом чувствительной клетки в непермиссивных (неразрешающих) условиях.

Чаще абортивный тип взаимодействия наблюдается при заражении стандартным вирусом нечувствительной клетки. При этом механизм генетической резистентности не одинаков. Он может быть связан с отсутствием на плазматической мембране специфических рецепторов, неспособность данного вида клеток инициировать трансляцию вирусной иРНК, с отсутствием специфических протеаз или нуклеаз, необходимых для синтеза вирусных макромолекул.

К абортивному взаимодействию могут привести и изменения условий, в которых происходит репродукция вирусов: повышение температуры организма, изменение рН в очаге воспаления, введение противовирусных препаратов и др. Однако, при устранении неразрешающих условий абортивный тип взаимодействия переходит в продуктивный со всеми вытекающими последствиями.

Интерферирующее взаимодействие определяется состоянием невосприимчивости к вторичному заражению клетки, уже инфицированной вирусом.

Гетерологичная интерференция происходит в том случае, когда инфицирование одним вирусом полностью блокирует возможность репликации второго вируса в пределах одной клетки. Один из механизмов связан с угнетением адсорбции другого вируса путем блокирования или разрушения специфических рецепторов. Другой механизм связан с ингибированием трансляции иРНК любой гетерологичной иРНК в инфицированной клетке.

Гомологичная интерференция типична для многих дефектных вирусов, особенно для повторно пассируемых in vitro и с высокой множественностью инфицирования. Их репродукция возможна только при заражении клетки нормальным вирусом. Иногда дефектный вирус может вмешиваться в репродуктивный цикл нормального вируса и образовывать дефектные интерферирующие вирусные частицы (ДИ). ДИ-частицы содержат лишь часть генома нормального вируса. По природе дефекта ДИ-частицы делеционны и их можно рассматривать как летальных мутантов. Основное свойство ДИ-частиц – способность к интерференции с нормальным гомологичным вирусом и даже способны играть роль помощников при репликации. Способность к адсорбции и проникновению в клетку связана с нормальной структурой капсида. Высвобождение и экспрессия дефектной нуклеиновой кислоты приводит к различным биологическим эффектам: тормозит синтетические процессы в клетке, за счет гомологичной интерференции ингибирует синтез и трансформацию белков нормальных вирусов. Циркулирование ДИ-частиц и коинфекция с нормальным гомологичным вирусом вызывает появление вялотекущих, длительных форм заболеваний, что связано со способностью ДИ-частиц за счет простоты генома реплицироваться значительно быстрее, тогда как дефектная популяция обладает заметным снижением выраженности цитопатического эффекта, характерного для нормального вируса.

Процесс взаимодействия вируса с организмом в большинстве случаев цитоспецифичен и определяется способностью возбудителя размножаться в определенных тканях. Однако некоторые вирусы отличаются более широким спектром тропизма и репродуцируют в самых различных клетках и органах.

К факторам специфичности вируса, ответственным за его тропизм и разнообразие поражаемых клеток относится количество специфических рецепторов (как у вириона, так и у клетки) обеспечивающих полноценное взаимодействие вируса с клеткой. Количество таких рецепторов обычно ограничено.

В некоторых случаях сама физиологическая специфика клеток, а значит и их бимолекулярная организация, способствует проявлению вирулентности возбудителя. Например, G-белок оболочки вируса бешенства обладает высоким сродством к ацетилхолиновым рецепторам нейронов, что обеспечивает его способность проникать в клетки нервной ткани. Следует отметить, что нейротропные вирусы вызывают особенно тяжелые заболевания, т.к. нервные клетки не регенерируют. Более того, репродукция возбудителя делает их мишенями для цитотоксических иммунных реакций.

Довольно часто вирулентность вирусов повышается за счет мутаций. Особое значение в данном случае приобретает способность вирусов к обратной мутации генов (реверсии). Гены, кодирующие структуру белка, могут восстановить свою структуру и трансформировать ранее авирулентные штаммы вирусов в вирулентные.

Не менее важное значение имеют и особенности восприимчивого макроорганизма.

Возраст является о

Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги).

Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным – натуральной оспы (около 350 нм).

Различают просто устроенные (например, вирус полиомиелита) и сложно устроенные (например, вирусы гриппа, кори) вирусы. У просто устроенных вирусов нуклеиновая кислота связана с белковой оболочкой, называемой капсидом (от лат. capsa – футляр). Капсид состоит из повторяющихся морфологических субъединиц – капсомеров. Нуклеиновая кислота и капсид, взаимодействуя друг с другом, образуют нуклеокапсид. У сложно устроенных вирусов капсид окружен дополнительной липопротеидной оболочкой – суперкапсидом (производное мембранных структур клетки-хозяина), имеющей «шипы». Для вирионов характерен спиральный, кубический и сложный тип симметрии капсида. Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида, кубический тип симметрии – образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту.


Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.В вирусологии используют следующие таксономические категории: семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus).

Однако названия родов и особенно подсемейств сформулированы не для всех вирусов. Вид вируса биноминального названия, как у бактерий, не получил.

В основу классификации вирусов положены следующие категории:

§ тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две),

§ особенности воспроизводства вирусного генома;

§ размер и морфология вирионов, количество капсомеров и тип симметрии;

§ наличие суперкапсида;

§ чувствительность к эфиру и дезоксихолату;

§ место размножения в клетке;

§ антигенные свойства и пр.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям – развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые неканонические вирусы – прионы – белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10.20x100.200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта.Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды – небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.

В отличие от всех организмов вирусы характеризуются следующими признаками:

· они не имеют клеточной организации;

· не имеют собственных белоксинтезирующих и энергетических систем;

· обладают особым разобщенным (дизъюнктивным) способом размножения (репродукции): в клетках отдельно синтезируются вирусные нуклеиновые кислоты и белки, а затем происходят их сборка в вирусные частицы.

· фильтруемость - прохождение вирусов через бактериальные фильтры, что связано с малыми размерами вирусов (их размеры выражаются в нанометрах, т.е. они в тысячи раз меньше клеток).

Вирусы могут существовать в двух формах:

1). Внеклеточная форма - вирион - это сформированная вирусная частица, включающая в себя все составные элементы: капсид, нуклеиновую кислоту, структурные белки, ферменты и др.

2). Внутриклеточная форма - вирус - может быть представлена одной молекулой нуклеиновой кислоты.

Вирусы отличаются по форме вирионов, которые могут иметь вид палочек (вирус табачной мозаики), пули (вирус бешенства), сферы (вирусы полиомиелита, ВИЧ), нити (вирус Эбола), сперматозоида (многие бактериофаги).

Размер вирусов колеблется от 15 до 400 нм (1 нм равен 1/1000 мкм): к маленьким вирусам, размер которых сходен с размером рибосом, относят вирус полиомиелита (20 нм), а к крупным - вирус натуральной оспы (350 нм).

Классификация вирусов.

Различают ДНК-содержащие вирусы (Вирус герпеса, натуральной оспы, аденовирусы) и РНК-содержащие (вирус гриппа, бешенства, полиомиелита, кори).

Различают простые вирусы (вирус полиомиелита, ВТМ) и сложные вирусы (вирусы гриппа, герпеса, кори).

Строение вирусов.

Простые , или безоболочечные, вирусы состоят только из нуклеокапсида – это нуклеиновая кислота связанная с белковой оболочкой. Белковая оболочка вирусов называется капсидом и состоит из отдельных субъединиц – капсомеров .

Сложные , или оболочечные, вирусы кроме капсида, имеют дополнительную оболочку - суперкапсид, которая состоит из двойного слоя липидов и белков. На оболочке вируса расположены гликопротеиновые шипы, или шипики.

Внутренние структуры вирусов называются сердцевиной .

Различают два типа симметрии капсида (нуклеокапсида):

1). Спиральный тип - капсомеры уложены по спирали вместе с нуклеиновой кислотой, придает вирусам палочковидную форму (например, у ВТМ).

2). Кубический тип - обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту, придает вирусам сферическую форму (например, у вируса герпеса).

Капсид и суперкапсид защищают вирионы от воздействия окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) вируса на определенных клетках.

К неклеточным формам жизни, кроме вирусов, относят прионы и вироиды. Прионы - инфекционные белковые частицы, не имеющие нуклеиновой кислоты и очень маленького размера. Прионы вызывают у человека медленные (прионные) болезни, протекающие по типу энцефалопатий (болезнь Крейтцфельда-Якоба, куру и др.).

Вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белок и вызывающие заболевания растений.

Взаимодействие вируса с клеткой хозяина.

Различают три типа взаимодействия вируса с клеткой:

1. Продуктивный тип – характеризуется образованием новых вирионов в клетке хозяине.

2. Абортивный тип, характеризуется прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются.

3. Интегративный тип или вирогения - взаимное сосуществование вируса и клетки.

Продуктивный тип взаимодействия вируса с клеткой осуществляется в результате его размножения, т.е. репродукции вируса. Репродукция проходит в несколько стадий:

1) адсорбция вирионов в клетке;

2) проникновение вирионов в клетку;

3) «раздевание» и высвобождение вирусного генома (депротеинизация вирусов);

4) биосинтез компонентов вируса;

5) формирование вирусов - «сборка»;

6) выход вирионов из клетки.

У различных вирусов эти стадии отличаются. Полный цикл репродукции вирусов завершается через 5 - 6 часов (вирус гриппа) или через несколько суток (вирус кори).

Продуктивное взаимодействие чаще носит литический характер, т.е. заканчивается гибелью инфицированной клетки, что происходит после полной сборки дочерней популяции и выхода вирусов из клетки.

Интегративный тип взаимодействия (вирогения) заключается в интеграции, т.е. встраивании вирусной ДНК в хромосому клетки и их совместном существовании. Встроенная в состав хромосомы клетки вирусная ДНК, называется провирусом . При этом вирусная частица может стать неактивной, иногда остается в клетке очень долго ничем не выдавая своего присутствия (ВИЧ, вирус гепатита В). Однако, под влияние некоторых физических и химических факторов, провирус может выщепляться из хромосомы клетки и переходить в автономное состояние с развитием продуктивного типа взаимодействия с клеткой, либо клетка трансформируется, давая начало злокачественному росту (онкогенные вирусы).

Вирусы бактерий (бактериофаги).

Бактериофаги - вирусы, обладающие способностью проникать в бактериальные клетки, репродуцироваться в них и вызывать их лизис. Они состоят из головки, которая содержит нуклеиновую кислоту, и отростка (хвост). Большинство содержит двунитевую ДНК, которая замкнута в кольцо.

Проникновение фага в бактериальную клетку происходит путем инъекции нуклеиновой кислоты через канал отростка.

По механизму взаимодействия фага с бактериальной клеткой различают:

1) Вирулентные бактериофаги, попав в бактериальную клетку реплицируются (формируя 200 - 300 фаговых частиц) и вызывают гибель (лизис) бактериальной клетки.

2) Умеренные после проникновения в бактериальную клетку не разрушают ее, так как ДНК фага встраивается в ДНК бактерий. Такая ДНК бактериофага называется профагом , а бактерия лизогенной . Такое сосуществование бактерии и умеренного бактериофага называется лизогения .

Бактериофаги применяют в лабораторной диагностике для идентификации бактерий с целью выявления источника инфекции. Препараты бактериофагов выпускают в таблетках, в форме мазей, аэрозолей, свечей и применяют для профилактики и лечения некоторых инфекционных заболеваний.

Методы изучения вирусов.

Так как на искусственных питательных средах вирусы не культивируются, для их репродукции с диагностическими целями используют организмы лабораторных животных, куриные эмбрионы и культуры клеток (основной метод).

Лабораторных животных (белых мышей, хомяков, кроликов, обезьян и др.) заражают исследуемым вирусосодержащим материалом. Обнаружение (индикацию) факта размножения вирусов устанавливают на основании развития типичных признаков заболевания, изменений органов и тканей животного или положительной реакции гемагглютинации (РГА). РГА основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов различных видов животных, птиц и человека за счет имеющегося на поверхности вириона особого белка гемагглютинина.

Куриные эмбрионы (развивающиеся 5 - 12-дневные) заражают путем введения исследуемого материала в различные ткани и полости зародыша. Обнаружение вирусов осуществляют на основании специфических поражений оболочек и тела эмбриона (оспины, кровоизлияния), а так же в РГА.

Культуру клеток применяют наиболее часто. Культуру клеток заражают вирусом и покрывают тонким слоем агара. В зависимости от свойств вируса и типа зараженных им клеток исходом взаимодействия вируса с клеткой могут быть следующие изменения культур клеток:

Цитопатический эффект (ЦПЭ) - развитие дегенеративных процессов в клетках.

Образование симпластов - гигантских многоядерных клеток в результате слияния цитоплазмы нескольких клеток и митотического деления.

Образование включений - одно из проявлений ЦПЭ.

Увеличение массы вирусов - образование бляшек или колоний вирусов (ограниченные участки разрушенных вирусами клеток видимые как светлые пятна на фоне окрашенных живых клеток (например, у вирусов оспы, кори, полиомиелита и др.)).


Похожая информация.


Вирусы являются самыми мелкими из всех микроорганизмов. Для них принято измерение в миллимикронах и в ангстремах. Для определения таких размеров частиц применяется несколько методов. Так, взвесь вирусов пропускают через особые фильтры из коллодия, имеющие очень мелкие поры определенной величины. Фильтрование производят через несколько фильтров с разной величиной пор. Разница между диаметрами пор последнего фильтра, пропустившего вирусные частицы, и фильтра, уже не пропустившего вирусные частицы, указывает средние размеры вирусных частиц. При сверхскоростном центрифугировании (50 и более тысяч оборотов в минуту) величина вирусных частиц определяется по специальной формуле в зависимости от числа оборотов и времени осаждения частиц. При этом происходит и очистка вируса от посторонних веществ. Для этого подбирают такие скорости, при которых выпадают посторонние частицы, сначала крупные, а потом самые мелкие. При наиболее высокой скорости получают лишь частицы вируса.

Человек увидел вирусы только после 1940 г., когда был построен и усовершенствован электронный микроскоп. При увеличении в десятки и сотни тысяч раз удалось изучить форму, величину, а также строение частиц некоторых вирусов.

Было найдено, что как величина, так и форма отдельных особей (элементарных частиц) разных видов вирусов довольно разнообразны. Имеются крупные вирусы (например, вирус орнитоза, оспы, трахомы и др.), вирусы средних размеров (гриппа, чумы, бешенства) и мелкие (вирус полиомиелита, кори, ящура, энцефалитов, вирусы многих растений). В таблице приводятся размеры некоторых вирусов, определенные разными способами, в миллимикронах (по В. М. Жданову и Шен).

Самые крупные вирусы приближаются по своим размерам к самым мелким бактериям, а самые мелкие вирусы близки к крупным белковым молекулам.

По внешнему виду одни вирусы имеют шарообразную форму (вирус гриппа), другие - кубовидную форму (вирус оспы), третьи - вид палочки. Вирус табачной мозаики (ВТМ) имеет вид тонкой шестигранной палочки длиной 300 ммк и в диаметре 15 ммк.

При многих вирусных инфекциях (оспа, бешенство, трахома и др.) наблюдаются в цитоплазме или ядре клетки организма хозяина особые, специфические для каждой инфекции внутриклеточные тельца - включения. Они довольно крупные, и их можно видеть в световой микроскоп.

В большинстве случаев включения представляют собой скопление элементарных телец, вирусных частиц, как бы их колонию. Наличие их в клетках помогает при диагностике некоторых заболеваний.

Одним из своеобразных свойств многих вирусов растений является их способность образовывать кристаллы. Д. И. Ивановский первый наблюдал в листьях табака, пораженных ВТМ, включения, называемые теперь кристаллами Ивановского. Они состоят из элементарных частиц вируса табачной мозаики. Кристаллы вируса можно растворять, как растворяют сахар, соль. Из раствора этот вирус можно выделить в аморфном, некристаллическом, состоянии. Осадок можно вновь растворить, затем снова превратить в кристаллы. Если растворить кристаллический вирус в тысячу раз, то капля такого раствора вызовет у растения мозаичную болезнь. Из вирусов человека и животных пока получены кристаллы вируса полиомиелита. Каждый кристалл состоит из миллионов вирусных частиц.

Химический состав вирусов был изучен прежде всего у возбудителя табачной мозаики. Этот вирус представляет собой чистый нуклеопротеид, т. е. состоит из белка и нуклеиновой кислоты. Вирусный нуклеопротеид табачной мозаики имеет огромный молекулярный вес (40-50 млн.).

Вирусная частица имеет сложное строение. Нуклеиновая кислота находится внутри вирусной частицы, она окружена белковой оболочкой. В вирусной частице обычно содержится одна молекула нуклеиновой кислоты.

Вирусы растений содержат рибонуклеиновую кислоту, фаги содержат дезоксирибонуклеиновую кислоту. В вирусах человека и животных находится или РНК, или ДНК. РНК содержится в вирусах гриппа (1,6%), полиомиелита (24%), некроза табака (18%), мозаики табака (6%), ящура (40%), саркомы Рауса (10%) и др. ДНК содержится в вирусах осповакцин (6%), папилломы (6,8%), герпеса (3,8%), полиомы (12%) и др.

Теперь интенсивно изучается вопрос, как соединяются белок и нуклеиновая кислота, как они подогнаны друг к другу. Для разрешения этого вопроса пользуются методом рентгенокристаллографии. Если в вирусной частице имеются субъединицы, то этот метод может установить их число, а также их взаимное расположение. Оказалось, что для большинства вирусов характерно закономерное, высокоупорядоченное расположение элементов вирусной частицы.

У вируса полиомиелита нуклеиновая кислота свернута в клубок, белковая оболочка состоит из 60 одинаковых субъединиц, которые объединены в 12 групп, по 5 субъединиц в каждой. Частица вируса имеет сферическую форму.

Нуклеиновая кислота вируса табачной мозаики имеет вид спирали или пружины. Белковая оболочка ВТМ состоит также из отдельных одинаковых по форме и размерам белковых субъединиц. Всего имеется 2200 субъединиц, расположенных в виде 130 витков вокруг стержня нуклеиновой кислоты. Молекулярный вес такой субъединицы 18 000. Каждая субъединица представляет собой пептидную цепочку, содержащую 158 определенных аминокислот, причем уже определено последовательное расположение этих аминокислот. В настоящее время интенсивно изучается последовательность расположения 6500 нуклеотидов, образующих нуклеиновую кислоту. Когда эта задача будет решена, то станет известен план, которым определяется тип вируса, образующегося в зараженной клетке. Строение, подобное частицам ВТМ и полиомиелита, имеют другие мелкие вирусы растений.

У более крупных вирусов, кроме нуклеиновой кислоты, белковой оболочки, есть еще внешние оболочки, содержащие белки, липоиды, углеводы. Некоторые вирусы содержат ферменты. Так, гриппозный вирус имеет фермент нейраминидазу, парагриппозный вирус - сендай-лизин, вирус миелобластоза птиц содержит аденовинтрифосфатазу. Эти ферменты растворяют оболочку клеток для проникновения вируса в тело своего будущего хозяина.

В свободном состоянии, во внешней среде вне живой клетки, вирусы не проявляют активности, они только сохраняют свою жизнеспособность, иногда продолжительное время. Но как только вирусы встречаются с чувствительными к ним клетками, они становятся активными, внедряются в них и проявляют все признаки жизнедеятельности.

Единственным методом изучения жизнедеятельности вирусов раньше было заражение восприимчивых к ним опытных животных: мышей, кроликов, обезьян и др. Более удобно и экономно выращивать вирусы в развивающемся зародыше куриного яйца. Материал, содержащий вирус, вводят шприцем в зародыш на 8-12-й день его развития. Через несколько дней пребывания зародыша в термостате изучают патологические изменения, вызываемые вирусом в зародыше. Затем пересевают в свежий зародыш другого яйца. В последнее время получил наибольшее применение метод однослойных культур из изолированных клеток животных тканей. Размельченную свежую ткань обрабатывают ферментом трипсином, который разрушает межклеточные связи. Освободившиеся клетки отмывают от трипсина, разводят питательным составом (№ 199, содержащим необходимые аминокислоты и соли) и помещают в пробирки или в специальные плоские чашки. В термостате клетки размножаются, образуя однослойный пласт по стеклу. Затем эту культуру однородных клеток заражают вирусом и происходящие в ней процессы изучают под микроскопом или другими способами. Так трудоемкий и дорогой способ, например культура вируса полиомиелита на печени обезьян, был заменен быстрым способом выращивания его в тканевой культуре.

В 1955 г. и позднее были получены необычные факты, вызвавшие недоумение у ученых биологов. Химическим путем вирус табачной мозаики был разделен на свои составные части: белок и нуклеиновую кислоту. Каждая из них в отдельности не вызывала заболевания мозаикой у листьев табака. Но когда их опять соединили вместе в пробирке (10 частей белка и 1 часть нуклеиновой кислоты) и заразили этой смесью листья табака, то получили типичную мозаику на листьях, как от исходного цельного ВТМ. При электронной микроскопии были найдены типичные палочки вируса, состоящие из белковой оболочки, в которой был заключен тяж нуклеиновой кислоты. Таким образом, нуклеиновая кислота связалась с белковой частью и заняла в ней свое нормальное положение. Открытие этого явления - ресиитеза (восстановления) вируса - является крупнейшим достижением современной микробиологии, открывающим новые пути в биологии и медицине.

Далее оказалось, что достаточно натереть лист табака лишь одной нуклеиновой кислотой, выделенной из ВТМ мягким способом, как на листе возникают (конечно, не в большом количестве) типичные некрозы, в которых находились в огромном количестве типичные цельные вирусные частицы.

Такие же результаты были получены с вирусами человека: полиомиелита, гриппа и др.

Выл получен даже гибридный вирус мозаики табака из белка одного типа вируса и РНК другого типа вируса, отличавшегося по некоторым признакам от вируса первого типа. При размножении этот гибридный вирус давал потомство только того вируса, чью РНК содержал гибрид.

Все эти факты говорят о том, что нуклеиновым кислотам принадлежит ведущая роль в размножении вирусов и инфекциозности их. Нуклеиновые кислоты обеспечивают передачу наследственных свойств. В кислотах заключена наследственная информация по синтезу полноценных вирусных частиц внутри клетки.

Белковая оболочка вируса несет защитную функцию, охраняя от внешних воздействий хрупкую нить нуклеиновой кислоты, кроме того, помогает вирусу проникать в клетку, определяет специфичность вирусов. Но некоторые ученые не считают возможным так ограничивать значение белков. Нужны дальнейшие исследования о роли вирусных белков.

Процесс размножения вирусов принципиально отличается от процесса размножения бактерий, простейших и других клеточных организмов.

Различают четыре фазы этого процесса: прикрепление вирусных частиц к клетке хозяина, проникновение вируса внутрь клетки, внутриклеточное размножение вируса и выход новых частиц вируса из клетки.

Первая фаза - прикрепление, или адсорбция, вируса к клетке - изучена в отношении вирусов гриппа и полиомиелита. Стенка клетки имеет мозаичное строение, в одних местах ее выступают молекулы мукопротеидов, в других молекулы липопротеидов. Вирус гриппа адсорбируется на мукопротеидах, а вирус полиомиелита адсорбируется на липопротеидах. Адсорбцию можно наблюдать в электронный микроскоп. В месте адсорбции вируса на стенке клетки образуется углубление, куда втягивается частица вируса. Края углубления смыкаются, и частица вируса оказывается внутри клетки (виропексис). Одновременно с виропексисом происходит разрушение белковой оболочки вируса. Проникновению вируса гриппа в клетку способствует фермент его оболочки. Таким образом, в клетку проникает нуклеиновая кислота, освобожденная от белковых оболочек с помощью ферментов самой клетки.

В третьей фазе проникшая в клетку вирусная нуклеиновая кислота включается в обмен веществ клетки и направляет аппарат синтеза клетки на производство белка и нуклеиновой кислоты не клетки, а новых вирусных частиц. Деятельность ферментов, участвующих в синтезе вируса, активизируется, а остальных ферментов тормозится. Кроме того, создаются новые ферменты, которых клетка не имела, но которые необходимы для синтеза вирусных частиц. Можно полагать, что в это время организуется новая единая система вирус - клетка, переключенная на синтез вирусного материала. В начале этой фазы не удается различить в клетке какие-либо элементы вируса.

Обычно нуклеиновые кислоты и белки вируса синтезируются не одновременно и в разных местах клетки. Сначала начинается синтез нуклеиновой кислоты, а затем несколько позднее идет синтез белка. После накопления этих составных частей вируса происходит их объединение, сборка в полноценные вирусные частицы. Иногда образуются неполные вирусные частицы, лишенные нуклеиновой кислоты и потому неспособные к самопроизводству (бублики).

Быстро наступает последняя фаза - выход вирусных частиц из клетки. В каком-либо месте клетки сразу выходит около 100 частиц вируса, У более сложных вирусов имеются еще внешние оболочки вирусного нуклеопротеида, которыми они обволакиваются во время прохождения через клетку и выхода из нее, при этом в состав внешних оболочек входят белки клетки хозяина.

У вирусов человека и животных выход нового потомства происходит в несколько циклов. Так, у вируса гриппа каждый цикл продолжается часов 5-6 с выходом 100 и более вирусных частиц одной клетки, а всего наблюдается 5-6 циклов в течение 30 часов. После этого способность клетки производить вирус истощается, и она погибает. Весь процесс размножения парагриппозного вируса Сен дай от адсорбции до выхода из клетки продолжается 5-6 часов.

Иногда частицы вируса не выходят из клетки, а скапливаются в ней в виде внутриклеточных включений, очень характерных для разных видов вирусов. Вирусы растений образуют включения, имеющие кристаллическую форму.

Большое внимание начинает привлекать к себе семейство микробов, получившее название "микоплазма", так как за последнее время в этой группе обнаружены возбудители различных заболеваний человека и животных. В виде скрытой инфекции они часто обитают во многих тканевых культурах - Хела и др. Микоплазмы занимают промежуточное положение между бактериями и вирусами. С вирусами их сближает фильтруемость через бактериальные фильтры, фильтрующиеся формы способны к саморепродукции, внутриклеточному размножению. К признакам, сближающим вирусы с бактериями, относится способность расти на питательных средах, образовывать на них колонии, а также отношение к антибиотикам, сульфамидам и их антигенная структура.

Микробиология: конспект лекций Ткаченко Ксения Викторовна

1. Морфология и структура вирусов

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

Морфология. Мы видели, что члены одного и того же класса, независимо от их образа жизни, сходны между собой по общему плану организации. Это сходство часто выражается термином «единство типа» или указанием на то, что некоторые части и органы у различных видов одного и того

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9/10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий 1. Особенности строения бактериальной клетки. Основные органеллы и их функции Отличия бактерий от других клеток1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.2. В клеточной стенке бактерий

Из книги Микробиология автора Ткаченко Ксения Викторовна

3. Культивирование вирусов Основные методы культивирования вирусов:1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных

Из книги Общая экология автора Чернова Нина Михайловна

1. Морфология и культуральные свойства Возбудитель относится к роду Carinobakterium, виду C. difteria.Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен выраженный полиморфизм. На концах булавовидные утолщения – метахроматические зерна волютина.

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

1. Морфология и культуральные свойства Возбудитель относится к роду Mycobakterium, вид M. tuberculesis.Это тонкие палочки, слегка изогнутые, спор и капсул не образуют. Клеточная стенка окружена слоем гликопептидов, которые называются микозидами (микрокапсулами).Туберкулезная палочка

Из книги Путешествие в страну микробов автора Бетина Владимир

4. Морфология бактерий, основные органы Размеры бактерий колеблются от 0,3–0,5 до 5-10 мкм.По форме клеток бактерии подразделяются на кокки, палочки и извитые.В бактериальной клетке различают:1) основные органеллы: (нуклеоид, цитоплазма, рибосомы, цитоплазматическая

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

5. Морфология бактерий, дополнительные органеллы Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий.

Из книги Клематисы автора Бескаравайная Маргарита Алексеевна

10. Морфология вирусов, типы взаимодействия вируса с клеткой Вирусы – микроорганизмы, составляющие царство Vira.Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).По форме вирионы могут быть: округлыми, палочковидными, в виде

Из книги Логика случая [О природе и происхождении биологической эволюции] автора Кунин Евгений Викторович

Глава 6. АДАПТИВНАЯ МОРФОЛОГИЯ ОРГАНИЗМОВ Среди приспособлений животных и растений к среде немаловажную роль играют морфологические адаптации, т. е. такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных

Из книги автора

Из книги автора

Инфекционная РНК и реконструкция вирусов Доказательства того, что РНК вирусов является генетическим материалом, предоставил нам все тот же ВТМ. Прежде всего ученым удалось изменить частицы ВТМ, устранив из их состава белковый компонент. В таком состоянии вирусы

Из книги автора

Угроза вирусов Одна из книг о вирусах очень метко названа «Вирусы - враги жизни». И не только у вирусов гриппа, но и у других вирусов, поражающих человека, «на совести» десятки тысяч, а может быть, и миллионы жизней.Небезопасной болезнью следует считать краснуху. Это

Из книги автора

Из книги автора

Морфология и биология клематисов Клематисы? многолетние, в подавляющем большинстве листопадные, реже вечнозелёные, растения.Корневая система. Взрослые клематисы имеют два основных типа корневой системы: стержнекорневую и мочковатую. При ограниченном поливе (на юге)

Из книги автора

Глава 10 Мир вирусов и его эволюция Пер. Г. ЯнусаВирусы были открыты как нечто совсем непримечательное, а именно необычная разновидность инфекционных агентов, а возможно, и особый род токсинов, вызывающих болезни растений, например табачную мозаику. Так как эти агенты